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P The flight mechanics and performance capabilities of
Apollo Extension Systems missions are reviewed.

Present AES ground rules do not cover trajectory
design. Strict adherence to Apollo Operational Nominal
Trajectory Ground Rules* will preclude a majority of these
missions. Judicious modifications of these ground rules,
however, appear to be possible without seriously degrading the
. mission reliability. Such modifications would render feasible
all AES missions that are currently being considered.

. Payloads have then been estimated for each mission
and the corresponding flight plans considered. Saturn IB
launch vehicles are used for low altitude earth orbital
missions that require no plane change capability. Saturn V
launch vehicles are required for all other missions.

Finally the flight profiles are investigated in
light of their concomitant environments and operating require-
ments, that would provide a basis for meaningful trade-offs in

i

mission planning. Recommendations are also made for future (izché\

ef'forts in these areas, e
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SUBJECT:  AES Flight Mechanics and DATE: Jyne 10, 1965
Performance Capabilities (U)
Case 218 FROM: R, Y, Peil

MEMORANDUM FOR FILE

1.0 Introduction

The purpose of this memorandum is to present data
and analyses in the areas of astrodynamics and propulsion,
that govern the flight performances of Apollo Extension
Systems missions. For the sake of clarity, this material
will be organized along the divisiong of the various mission
classes which have been proposed and it will be presented
wherever possible in tabulated and/or graphical form. The
preparation has drawn freely from various sources of infor-
mation, as listed in the Reference section at the end of
this memorandum., In this sense, it is a sequel to Reference
1, A significant portion of these references results from
studies conducted at MSC, MSFC, and TRW/Space Technology
Laboratories. The STL study effort has been made under a
contract funded by NASA Headquarters. To these as well as
many others who have made valuable contributions in the form
of advice and discussion, indebtedness is gratefully
acknowledged,

1.1 Mission Attributes

AES missions can be most conveniently grouped into
four classes as summarized in Table 1, on the following page.
Depending on the performance requlrementé‘\e{ther the Sa-IB
or the Sa-V launch vehicle may be considered. The following
section lists the more important specifications of these
launch vehicles, that have first order effects on the mission
performance capabilities,

1.2 ILaunch Vehicles - ) .~

The Sa-IB and S-V are respectively two and three-
staged launch vehicles. In the latter case, a two-stage
version may be considered for reasons to be pointed out later. gﬁﬁ
Estimated performance capabilities are based upon the .
following payloads guaranteed by MSFC.
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TABLE 1

Migeion Class

BA —149A (8-64)

Mission Attributes

Earth Orbital

Low Altitude
No Plane Change

Low Altitude
Substantial Plane
Change

Synchronous

Lunar Orbital

Low Inclination
High Inclination

Lunar Exploration

Apollo - Like

Advanced

Composite and Advanced

Manned

Unmanned

Duration 14-45 Days

200 NM
Inclination a Function of ILaunch
Site and Launch Azimuth

200 NM
High Inclination

Synchronous Altitude with or without
Plane Change

Duration Up to 38 Days
(28 Days plus Trangit Time)

Near Equatorial
Lunar Polar Orbit

Duration Up to 26 Days
(14 Days plus Transit Time)

Continuousg Abort Capability

Restricted Abort Mode

Composgite Earth Orbital, Lunar
Libration Orbital, etc.

Planetary, Low Thrust, etec.
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1.2.1 Saturn IB Launch Vehicle

The Saturn IB launch vehicle 1s capable of placing
a 36,500 pound payload into a 105 nautical mile earth orbit
with a 72° launch azimuth., It consists of two propulsive stages
(S-IB and S-IVB) and the Instrument Unit. The S-IVB stage, as
presently designed for the Saturn IB, has a one burn capability.

1.2.2 Saturn V Launch Vehicle

The Saturn V launch vehicle is capable of placing
240,000 pounds in earth orbit, and 95,000 pounds into a
translunar trajectory. The standard Saturn V launch vehicle
consists of three stages (S-IC, S-II and S-IVB) and the
Instrument Unit. The S-IC stage will propel the launch vehicle
to an altitude of approximately 33.3 NM and velocity of
approximately 9,000 fps., After separation the S-II stage will
continue to accelerate the vehicle to approximately 22,200 fps
and 1ift it to an altitude of roughly 100 NM. The S-IVB stage,
as presently designed for the Apollo mission, will permit one
re-start to inject the payload from an earth parking orbit
into the translunar orbit. The structural design of this third
stage imposes a stack limit of approximately 110,000 pounds.

1.3 Spacecraft Propulsion

The Service Propulsion System (SPS) has an average
static thrust rating of 21,900 pounds and is gimballed to pro-
vide thrust vector control. It has a nominal fuel capacity of
41,000 pounds and weighs 10,000 pounds when dry. The rocket
engine is non-throttleable. The Command and Service Module
(CSM) Reaction Control System (RCS) consists of individual
units that are capable of developing 93 to 100 pounds of thrust.
The total number of re-startes is nominally 5,500 with a 1life
of 500 seconds. The same may be increased to 10,000 and 770
Seconds respectively.

The Lunar Excursion Module (LEM) propulsion
characteristics are summarized as follows:

Descent Stage Ascent Stage
Thrust 10,500 1bs. 3,500 1bs.
Propellant Weight 18,000 1bs. 4,922 1bs,
Specific Impulse 305 secs. 305 secs,

Throttling Range 10 - 1 ) Non
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1.4 Mission Constraints

Present AES ground rules do not impose specific
constraints on trajectory design. AES propulsion systems,
however, are currently subject to the followlng ground rule;
viz:

There shall be no uprating of propulsion systems
except through normal improvement in the course of the basic
(Apollo) program,

Reference 1 contains estimates of performance
capabilities that reflect this constraint, as well as a
tentative guideline, adopted so as to provide a better
definition of the problem in the course of analysis, This
guldeline is as follows:

The shaping and selection of trajectories and
orbits should be carried out with as much flexibllity as is
consistent with mission requirements and crew safety. Apollo
trajectory ground rules will be followed where applicable.
Departures from these will be permitted if they are necessary
for the execution of a particular mission and if total mission
assurance and crew safety are not seriously impaired. Further-
more, modifications of the ground rules and supplementary
guidelines will be considered if significant benefits may accrue
with respect to the overall objectives of the AES program. Such
modifications and guidelines may arise in different areas. The
following are possible examples.

1.4.1 It has been shown (Reference 2) that if free return

trajectories are used for lunar landing missions, the
lunar area which i1s accessible 1s severely limited. In order
to extend this area of accessibility for lunar exploration,
this constraint may have to be relaxed.

1.4.2 Apollo ground rules call for two passes over the landing

site area with the CSM-LEM before initiating the LEM
descent. Similarly, the duration of the transearth lunar park-
ing orbit phase is also kept to approximately the same length.
It has been shown (Reference 3) that lengthening of these orbit
stay times will greatly improve the:raccessibility of the lunar
surface.

1.4.3 The Apollo ground rule that limits the total mission
duration to 14 days or less is obviously not acceptable

for extended lunar exploration missions, since surface stay

times of about two weeks may be desired. To permlt these longer
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stay times, the total mission duration time must increase,

1.4.4 The problem of abort is an important consideration in any
manned space flight mission, and a continuous abort
capability is certainly desirable. For the Apollo mission, the
short surface stay time renders it possible to satisfy this
requirement. Such may not be the case for longer surface stay time,
particularly if it is desirable to reach an extensive area of
the moon. A similar situation arises in some lunar orbital
missions.

1.4.5 Apollo ground rules impose severe restrictions on the

launch geometry. Such restrictions will be reflected
in the payloads, particularly those for the earth orbital
missions under consideration. Relaxations of such ground
rules, in keeping with fundamental range safety constraints
may be indicated,

2.0 Mission Description

In this section will be presented some typical flight
modes, profiles, and estimated payloads. As mentioned in Section
1, Saturn IB and Saturn V launch vehicles will be used without
uprating, and the payload estimates are derived from the base
performance capabilities contained therein.

2,1 Earth Orbital Missions

Table 2 summarizes the orbital capabilities and flight
profiles used in this study. Various combinations of the pro-
pulsion capabilities available in the Saturn IB, the two-stage
and three-stage versions of the Saturn V, and the Apollo Service
Propulsion System (SPS) are indicated for achieving the
specified orbits. For 45-day-near-earth orbital missions, a
nominal altitude of 200 NM was selected in view of the satellite
lifetime requirement (See Section 3.3).

It is to be emphasized that these represent only some
possible -flight modes. There are undoubtedly many other modes
that will permit achievement of specified orbits with comparable
payloads. Estimates of the latter have been based on infor-
mation cited above, and impulsive velocity changes have been
adopted for succeeding phases after a "first orbital" insertion
(See section 3.1). While a conscious effort has been made to
maximize payload, no overall optimization has been carried out.
(See section 4).
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2.2 ILunar Orbital Migsion

Two types of lunar orbital missions are considered.

They will be characterized by their orbital inclination with respect

to the lunar equatorial plane. A description of these missions
follows,

2.2.1 Low Inclination Lunar Orbital Missions

This clase of misgsion is perhaps more useful for
glte certification purpose. 1In order to obtain sufficient
data regarding candidate Apollo landing sites and navigational
land mark locationg, a low inclination lunar orbit has been
shown to be adequate (Reference 4), A typical flight mode
would resemble that of the Apollo mission with the exception
that there will be no lunar landing and take-off phases, The
geguence of major eventg is as follows:

Earth Launch: Same as Apollo
Farth Parking Orbit: Near circular
95-100 NM Altitude
Insertion Same as Apollo
Coast Same asg Apollo

Translunar Phace:

Injection First or Second Orbit
Transposition & Docking Same ag Apollo
Return Mode Unrestricted

Flight Time Up to 110 hrs,
Pericynthion 25 NM

Lunar Parking Orbit:
Deboost during hyperbolic approach
Parking Orbit insertion
Perform Orbital misgsion & corrective plane changes as needed

Trancgearth Phase

Injection Same ag Apollo
Flight Time Up to 110 hrs.
Re-Entry Same as Apollo
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A reasonable estimate of the lunar orbiting payload may be obtained
upon augmenting the Apollo CSM by the LEM weight, or approximately
30,000 pounds, resulting in a total initial weight in orbit of
about 55,000 pounds.

2.2.2 High Inclination Lunar Orbital Mission

This class of mission is perhaps most useful for
scientific survey purposes. In order to realize maximum cover-
age of the lunar surface, a polar orbit is desirable. It is
possible for the lunar approach trajectory to enter into a
polar orbital plane by selecting the suitable entry point at
the moon's gphere of influence., A polar inclination, plus the
orbital stay time, will, however, rotate the orbital plane such
that an earth return may not be always possible within the
Apollo spacecraft capability.

The flight profile can be similar to that for the low
inclination orbit. The lunar orbit duration could be as long
as a lunar month or 28 days in order to observe the moon through
a cycle, Orbiting payload will be sensitive to mission require-
ments, particularly abort considerations (See Section 3.6). For
preliminary mission planning purposes, 1t 1s assumed that
excluding provisions for continuous abort capability, the
velocity requirements are approximately similar for both lunar
orbital missions. Consequently, similar estimates for the orbit-
ing payload may be used. :

2.3 Lunar Exploratlion Missions

An extenslive exploration of the moon may be accom-
plished by satisfying two criteria: (1) permit landings at
a maximum number of possible sites on the moon, and (2) per-
mit longer surface stay times. Such extended surface missions
may consist of a lunar flight to deliver an unmanned Shelter
to the lunar surface, to be followed by another flight to
execute a manned lunar landing and subsequent surface opera-
tions. Depending onthe contingency requirements, this class of
missions may result in different performance capabilities. These
are summarized as follows.

2.3.1 Apollo-Like Missions

The earlier missions should perhaps be designed with
a high degree of contingency provisions, and it might be desir-
able to retain the Apollo ground rule of continuous abort
capability., In this case, the flight profile may be identical
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to that for the Apollo, resulting in similar weight estimates.

An exception would be that in the case of the LEM/Shelter
mission, there will be no lunar launch and ascent transfer phase,
and that the LEM-Shelter landing will be entirely unmanned, The
bages for welght estimates are::

LEM/Shelter Mission LEM/Taxi Mission

CsM Same ag Apollo Same as Apolio
LEM A, S. Available for pay- Same as Apoilo
load to be
delivered
LEM D. S. Same as Apollo Same as Apollo

The accessible area will be restricted to below 10 degrees
latitude for stay time up to 14 days (See Section 3.5%
because of the desire for continuous abort.

2.3.2 Advanced Lunar Exploration Missions

Accumulated experience derived from earlier flights
might perhaps enable later lunar exploration missions to be
planned with relaxed ground rules concerning abort from the
moon, For planning purposes, bases for welght estimates
should remain unchanged for reasons to be discussed later,

Areas of accessibility, on the other hand, will undergo sig-
nificant improvment (See Section 3.6). The flight profile will
be substantially the same as that of the Apollo mission, except
perhaps for possible relaxations in the flight time, and the
specifications for the lunar parking orbit phase (See Section 3).

3.0 Performance Analysis

The objective of this section is to investigate the
several AES mission flight profiles, in light of their concomi-
tant environments and operating requirements, that would provide
a basis for meaningful trade-offs in mission planning. Ten
major areas have been identified as of primary importance in
their interaction with the flight profiles as well as theilr
effect of the AES mission objectives. These areas are:
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Range Safety Considerations
Boil-off Problems
Satellite Lifetimes
Synchronous Mission Capability
Lunar Surface Accessibility
Abort Considerations
Lighting Constraints
Survey and Mapping Coverage
Long Duration Perturbations
Composite Missions
These will now be discussed individually.
3.1 Range Safety Considerations

For a given orbit, the launch vehicle performance
capability 1s extremely sensitive to the launch geometry,
This 1s particularly true in the case of achieving a given
earth orbit, since range safety and related considerations
may impose severe constraints on allowable launch geometry,
For a detailed discussion of range-safety and related con-
siderations and their interactions with the launch geometries,
reference is made to Appendix I.

In general, large characteristic velocities are
required to execute substantial plane changes, if required,
at orbital speeds. This will drastically reduce payload
capabilities. However, fundamental range safety constraints
may permit relaxation of Apollo ground rules such that sultable
yaw and three dimensional maneuvering programs may be
designed to accomplish plane changes more economically at
lower vehicle velocities.

3.2 Satellite Lifetimes

The predicted satellite lifetime is a function of the
orbital altitude, the satellite ballistic number and the atmo-
spheric model used. ©Since the AES missions are timed for a
period that may include a year of maximum solar activity,
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estimates based on predicted atmospheric model for extremely high
solar activity at diurnal maximum should be used as guidlines.
The orbital lifetimes of Apollo spacecrafts have been computed
based on such a conservative atmosphere model, and it is in-
dicated that for mission duration of about 45 days, a nominal
altitude of 200 NM should be adequate (Reference 5). The
integrated l1lifetime curve is included in Figure 1.

3.3 Synchronous Mission Capability

The performance capability of the Sa-V launch vehicle
for the earth synchronous orbital mission depends to a large
extent upon the restart capability of the S-IVB stage. In
order to restart this stage, the pressurization system must
have the capability to repressurize the partially depleted
tanks of propellants, This problem is further aggravated by
the boil-off of cryogenic propellants during the fairly
extended period of transfer to synchronous altitude. With
helium heaters placed on the S-IVB stage, as are now on the
3-IV stage, the problems associated with the multiple start
of the 3-IVB stage could be eliminated.

3.4 Boil-Off Problems*

On Saturn V missions where there 1s a relatively long
coast period for the S-IVB between burns, the boil-off of liquid
hydrogen becomes appreciable and results in a significant
reduction of its capability. For synchronous orbiltal flights
the boil-off is greater because of the longer coast between
burns on the Hohmann transfer ellipse, and the slightly greater
boil-off rate due to longer continuous periods of sunlight.

There are two methods which have been suggested for
reducing the boil-off, By choosing launch dates close to the
earth's equinoxes, one can choose a Hohmann transfer ellipse
such that the apogee lies at the far edge of the shadow of
the earth. Thus a major portion of the time during the
transfer would be spent in this shadow, This, in addition to
reducing the time spent in parking orbit before transfer, can
significantly reduce the heat transfer to the propellant,
However, this method would limit the launch timing to a function
of the desired synchronous ground track point.

*¥This section has been contributed by Mr. P. W. Conrad.
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A second method to reduce boil-off involves a modifi-
cation of the S-IVB stage. By the use of high performance in-
sulations the heat transfer to the propellant may be reduced to
one-eighth that of the unmodified stage. The boil-off reduction
i1s estimated below for a nominal Apollo mission:

MODE STANDARD SUPER INSULATED
Sa-~IVB Sa-1IVB
Ground Hold Boil-Off 220 1bs. 26.4 1bs.
Boost Boil-Off 570 1bs. 70.5 1bs.
In Orbit Boil-Off 3820 1bs. 501.7 lbs.

This type of insulation can take only small aero-
dynamic and structural loads and thus requires a jettisonable
shroud during boost. This increase in stage weight 1s offset
somewhat by the possible reduction of internal insulation caused
by this modification., The galn resulting from this modification
is roughly one pound of payload in either syncronous orbit or
translunar trajectory for every pound of boil-off reduction. Ior
the synchronous missions of interest, addition of insulation

could apparently result in a payload increase of about 4,000
1bs.

With this provision, the following is feasible, After
a due east launch, the first two stages followed by the first
burn of the S-IVB stage place the satellite in a 100 NM parking
orbit. After about 1-1/4 orbits during which the systems are
checked out, the S-IVB stage 1s restarted at the descending node
to execute a Hohmann transfer to synchronous altitude with a
partial plane change. Arriving at the apogee which 1s the
synchronous -altitude, the S-IVB stage is started once more to
place the satellite in a new elliptic orbit with a higher
apogee velocity., After one orbit, during which the expended
S-IVB stage is Jettisoned, and the transposition and docking
of CSM and LAB module accomplished, the Service Propulsion
System engine is ignited to complete the plane change and
circularization maneuver.

3.5 Lunar Surface Accessibility
Lunar surface accessibility for an AES lunar landing

mission is a problem which is now under study. It is affected
by such constraints as the earth-moon trajectory return mode
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and the LEM-CSM rendezvous capability, as well as the surface
stay time and abort contingency requirements. In general, the
orientation of the arrival and departure velocities at the
moon are related geometrically through the lunar surface stay
time by virtue of the moon's rotation. Furthermore, these
orientations remain substantially constant for a given set of
launch and terminal conditions and flight time. The choice of
CSM lunar parking orbit, to permit the successful execution

of a LOR type mission, is further constrained by the limited
plane change capability during descent to and ascent from the
lunar surface. References 3 and 7 investigate the effect of
such parameters on lunar surface accessibility. It appears
that relaxation of Apollo ground rule requiring continuous
abort is almost mandatory if any substantial extension of
surface accessibility is to be achieved with Apollo systems.

3.6 Abort Mode Considera

t

ions
For low inclination lunar orbital mission, it might

be possible to execute an in-plane return injection during each

revolution of the parking orbit, This is due to the fact that

the orbital inclination is low and orbital stay time may not

be excessive,

For high inclination lunar orbital missions, however,
this is no longer the case with the proposed flight mode. The
abort capability of the spacecraft depends to a large extent
upon the transearth return time as well as the availability of
alternate propulsion modes (Reference 8). It has been shown that
through the use of the LEM descent stage for lunar orbit insertion,
a lunar polar orbital payload capability of about 35,350 lbs can
be achieved while still satisfying the continuous abort require-
ment,

For lunar surface missions, relaxation of abort rules
is less likely to affect the payload deliverable to the surface.
This is essentially due to the fact that with the LEM descent
stage unmodified, welght landed on lunar surface will be consist-
ent with Apollo capabillity. In the case of the LEM-taxi mission,
however, trade-off possibilities may exist between CSM and LEM
ascent stage capabilities, to permit some gains, if contingency
requirements were reduced.

3.7 Lighting Constraints
Lighting constraints for lunar orbital missions are still

in the process of being defined. The ability of a lunar orbital
mission to fulfill the objective of a mapping or survey mission is
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maximized by suitable sun angles. At any given instant, there
is an annular ring about the sub-solar point, of good lighting
conditions. The width of this annular ring is a function of
the photographic requirements which in fturn depend on the tasks
of the particular mission in gquestion. The detailed design of
the mission is influenced by the width of the acceptable light-
ing band and its interaction with the motion of this band due
to the earth's motion and to gravitational precessional terms.
The concept of using nodal regression to compensate for the
displacement of the sub-solar point is being explored.

3.8 Survey and Mapping Coverage

This aspect of lunar orbital mission is obviously
closely related to the lighting constraints. The latter will
have to be defined before any assessment of various orbital
methods available for adequate coverage of regions of interest
can be made, Also, regions of interest may require further
definition, Near polar regions are poorly illuminated at all
times, thus limiting coverages.

3.9 Long Duration Perturbations

AES missions are, in general, characterized by their
relatively long mission durations. Perturbations of orbital
elements may be important and their effects on overall mission
performance may have to be investigated.

3.10 Composite Missions

Certain composite missions may be of interest.
Possible examples are:

a. The orbiting CSM of a LEM/Shelter or LEM/taxi
mission may perform some lunar orbital survey
objectives,

b. A low altitude high inclination earth orbital
mission may be used to incorporate one of the
proposed AES experiments viz,: an Echo fly-
by maneuver,

¢c. An earth synchronous orbital mission may be used
for another AES experiment, viz,: the capture
of Syncom,.
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d. Other classeg of misgions may be of inferest and
should be investigated. Some examples are:
libration orbital missions where the spacecraft
may appear to be stationary with respect to the
earth-moon system; earth-moon periodic orbilt,
where the gpacecraft may circumnavigate the
moon and the earth or may enter into an orbit in
cislunar space; etc.

4,0 Conclusions

Increases in performance capability beyond the
Apollo mission without uprating Apollo propulgion systems are
usually made at the expense of reliability or upon the expect-
ation that experience gained in Apollo will reduce or eliminate
contingency requirements. Present AES ground rules, however,
do not cover trajectory design. The followlng remarks are,
therefore tentatively made in this light.

4,1 Earth Orbital Missions

Only synchronous missions and S-IB missione are payload
limited. For these missiong, payload optimization may be a
useful criterion. It is conceivable, however, that other criteria
such ag launch windows, mission flexibility, etc., may take
precedence, where the mission is not paylocad limited. Under
these circumstances, other flight modes than those proposed
gshould be investigated. 1In general, it appears that the
performance capability ot AES earth orbital missions is reason-
ably adequate, except perhaps for synchronous missions.

4,2 ZILunar Orbital Missions

Lighting constraints and photographic requirements
seem to constitute the governing factors in the design and
shaping of trajectories. Alternate propulsion modes may
affect significantly the abort capability and useful payload.

4.3 ILunar Exploration Missions

Relaxation of Apollo constrainte and ground rules are
necessary to conduct, in a trajectory sense, an extended stay
lunar exploration mission with increased surface accessibility.
Deliverable payload, however, 1s largely governed by LEM
descent stage capability.
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4.4 Recommendations

A review of AES studies in the area of flight mechanics
and performance capabilities, indicate the following needs:

a. AES Trajectory Ground Rules

b, Further studies of propulsion problems affecting
synchronoug mission, e.g., S-IVB restart capa-
bility, boil-off problems, payload optimization,
ete.

c. Reference trajectories for lunar orbital and
surface misgions,

d. AV Budgets

e. Trade-off analyses to evaluate alternate tra-

jectories,
Relia Bl
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RANGE SAFETY AND RELATED CONSIDERATIONS

1. Introduction

This section briefly summarizes launch site and range
safety limitations as they affect the performance of earth
orbital missions discussed under Section IV of this report.

2. Launch Geometry

In this attachment the launch geometry of a mission
is distinguished from the flight profile at launch in that the
latter is used to refer to a complete description of the powered
flight between initial lift-off and insertion into the "first
orbit". Launch geometry, on the other hand, contains only
information, mostly geometric, that has first order effects on
range safety and related considerations as well as performance
capabilities. For planning purposes, the important factors
that enter into the launch geometry are:

Launch azimuth

Dog-leg maneuvers

Yaw and general three dimensional maneuvers
Stages involved

The term "first orbit" used above signifies that it need not be
the final orbit called for by the mission under consideration.

3. Range Safety and Related Requirements

There are two basically different aspects to the range
safety and related problems. Firstly, the deterministic aspect
is that which results from the launch geometry. Impact range,
exit azimuth and ground track fall under this category.
Secondly, the probabilistic aspect encompasses range safety
problems owing to the uncertainties in guldance, rocket perfor-
mance, etc. The dispersion ellipses associated with impact
points are examples of this category.

Generally, the range safety and related requirements
considered here may be described as the safety to persons and
property. A derived form of this description may be expressed in
terms of:
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(a) Restrictions imposed on the ground track resulting
from the launch geometry, and

(b) Restrictions imposed on the planned stage impact
points.

An example of such fundamental range safety constraints would
be that there shall be no overflight within 25 NM of the
continental United States or Canada and that all planned stage
impact points shall be in the open ocean area. Table III
illustrates the payload sensitivity to launch geometry in the
case of earth polar orbiftal mission.

4, Orbital Inclination and Launch Geometry

For a given orbital inclination greater than the launch
site latitude, there is a particular azimuth that permits direct
injection into the desired plane. However, the resultant ground
track and planned stage impact points may not be acceptable.

The launch geometries proposed in this study result from the
following guidelines.

(a) The launch Azimuth is optimized with respect to
the inclination to within the bounds set by the
exit azimuth limits.

(b) If the orbital inclination cannot be attained by
the above optimization, the required plane change
is accomplished by means of yaw and general three-
dimensional maneuvers, programmed to satisfy the
fundamental range safety constraints.

It is to be noted that the required inclination 1is
that of the "first orbit". In the case of the earth equatorial
synchronous orbital missions, the chosen mode calls for a 28.5°
inclined parking orbit to be followed by a Hohmann transfer to
synchronous orbital altitude, with a plane change of 28.5° to
be executed at the apogee. Accordingly, the first guideline
mentioned above is sufficient, viz., a due east launch.

5. Conclusion

For a given earth orbital mission the performance
capabilities are extremely sensitive to the launch geometry.
This 1s due to the fact that large characteristic velocitiles
are required to execute substantial plane changes, if requilred,
at orbital speeds.
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By means of a suitable yaw and three dimensional
maneuvering program, it is possible to accomplish plane changes
more economically at lower vehicle velocities, while satisfying
the fundamental range safety constraints. On the other hand,
range safety and related considerations imposed constraints
on the optimization and launch azimuth and subsequent ground
track and planned stage impact polnts.
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GENERAL NOTES

*Indicates technical work performed under the General Mission
and not identified by a designated General Mission number.
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1 -
2 -
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|

C

Mission Planning and Mission Assurance
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Vehicle and Spacecraft Systems

Launch Operations and Checkout

Guidance Navigation

ial Tasks (S-) (Short Titles)
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Miscellaneous Short-Term Studies of Immediacy

Apollo Flight Mission Assignments

Operations and Exploration Planning

Review of Acceptance Plans for IMCC Launch Data System and
Launch Trajectory Data System

Lunar Landing Dynamics

Saturn IB/V Launch Vehicle Computer Controlled ESE System
Management Procedures in Computer Programming for Apollo
Not Issued

MILA Operations and Equipment Review

MSF Center Computer Operations Standardization

Saturn IB/Centaur Systems Engineering

Following is a list of definitions for the codes used in the
various report numbers:

TR
™
MM
MF

Bellcomm Technical Report

Bellcomm Technical Memorandum

Bendix Products Aerospace Division Report

Bell Telephone Laboratories Memorandum for File



